

	Examples					
Temperature (Kelvin)	Wavelength (μm)	Frequency Band				
6000 (the sun)	0.48	Visible (blue-green)				
310 (human)	9.35	Far Infrared Band				
4.2 (cosmic background)	690	Terahertz Band				

issivity at minimetre wave Frequencies					
Material	Emissivity (ε)	Reflectivity (ρ)			
Skin	0.98	0.02			
Wet soil	0.95	0.05			
Paint	0.94	0.06			
Heavy Vegetation	0.93	0.07			
Dry soil	0.92	0.08			
Dry grass	0.91	0.09			
Sand	0.90	0.1			
Asphalt	0.83	0.17			
Cotton cloth	0.80	0.2			
Oxidised steel	0.79	0.21			
Concrete	0.76	0.24			
Polished steel	0.07	0.93			

Metal	Work Function (eV)
Caesium	1.9
Potassium	2.2
Sodium	2.3
Barium	2.5
Copper	4.5
Tungsten	4.5
Silver	4.6

Material	Band Gap Energy (eV)	Long Wave Cutoff $\lambda_c(\mu m)$	Operating Temp (K)
Si	1.09	1.1	300
Ge	0.81	1.4	300
PbS	0.49	2.5	77
InSb	0.22	5.5	77
HgCdTe	0.025	22	77
Ge:Hg	0.087	14	
Si:Ge	0.065	17	

Example of a Thermal Imager & Some Images made using an Uncooled Sensor

	wulliay	er coating	LC11362	
To ind depose to tha For ex which	crease the transmi sited on the lens to t of the lens kample, uncoated can be increased	ssion of a lens, mo grade the refracti germanium has a to 97% with caref	ultilayer coatings we index change transmittance of ful grading	are from air 47%
	Material	Transmission Band (μm)	Refractive Index	
	Material Germanium	Transmission Band (μm) 2-20	Refractive Index 4	
	Material Germanium Sapphire	Transmission Band (μm) 2-20 0.4-5	Refractive Index 4 1.63	
	Material Germanium Sapphire Zinc selenide	Transmission Band (μm) 2-20 0.4-5 0.5-20	Refractive Index 4 1.63 2.4	

Catering for Antenna Pattern Effects
• For a differential solid angle
$$\partial \Omega$$
 we can write
 $\partial P = A_r B(\theta, \phi) F_n(\theta, \phi) \partial \Omega$
Where $B(\theta, \phi)$ – Source brightness as a function of solid angle
(W/m²/sr)
 $F_n(\theta, \phi)$ – Normalised radiation pattern of antenna as a function
of the solid angle
• Integrating over 4π steradians and over the frequency band f_1 to f_2
 $P = \frac{A_r}{2} \int_{f_1}^{f_2} \iint_{4\pi} B(\theta, \phi) F_n(\theta, \phi) \partial \Omega \partial f$
• This allows us to calculate the power incident on the antenna in
terms of the brightness of the source of the radiation and the gain

pattern of the antenna

Antenna Observing a Blackbody • For the antenna within a blackbody and limiting the bandwidth such that the brightness is constant with frequency, we substitute Rayleigh-Jeans approximation for $B(\theta,\phi)$ $P_{bb} = \frac{kT(f_2 - f_1)A_r}{\lambda^2} \iint_{4\pi} F_n(\theta,\phi)\partial\Omega$ • From antenna theory we know that the integral above equates to the pattern solid angle Ω_p given by $\Omega_p = \frac{\lambda^2}{A_r}$ • Which is substituted back into the power equation to give the fundamental equation of radiometry $P_{bb} = kT(f_2 - f_1)$

- because the source of radiation is extended and uniform
- The equation is independent of the distance from the radiating target
- The temperature of the antenna structure has no effect on the output power (if the antenna is loss free)
- Temperature and power are interchangeable so we can apply all of the gain calculations directly to the measured temperature
- The power detected is directly proportional to the bandwidth

The table lists typical contrasts that exist between metal objects and terrain types under different weather conditions	Material	Atmospheric Conditions		
		Clear	Fog	Rain
	Vegetation	200K	200K	40K
	Water	120K	100K	30K
	Concrete	190K	170K	40K

Example

- A space based radiometer operating at 94GHz with a bandwidth of 2GHz looks directly down at the ground at a temperature of 27°C and an average emissivity *ε* = 0.9. What is the received power?
- The total loss through the atmosphere (Figure 4.2 Notes) is 1dB. The loss $L_A = 10^{dB/10} = 1.26$
- Assuming the air has a water content of 3g/m³ the downwelling brightness temperature (Figure 4.3 Notes) is 30K. We assume that upwelling and downwelling temperatures are the same
- The reflectivity $\rho = (1-\varepsilon) = 0.1$

$$T_{AP} = T_{UP}(\theta, \phi) + \frac{1}{L_A} \left[\varepsilon T_B + \rho T_{SC} \right] = 30 + \frac{1}{1.26} \left[0.9 \times 300 + 0.1 \times 30 \right]$$
$$T_{AP} = 30 + 216.7 = 246.7 K$$

$$P = 30 + 10\log_{10} kT\beta = 30 + 10\log_{10} \left[1.38 \times 10^{-23} \times 246.7 \times 2 \times 10^9 \right]$$
$$P = 30 - 111.67 = -81.67 dBm$$

Antenna Efficiency Up until now it has been assumed that the antenna is lossless, in reality it absorbs some of the power incident on it, and hence it also radiates. The apparent temperature measured at the antenna output port T_{AO} is T_{AO} = η₁T_A + (1-η₁)T_p Where: η₁ - Radiation Efficiency of the Antenna (Typ 0.6) T_A - Scene Temperature measured by the antenna (K) T_p - Physical Temperature of the antenna (K) In this case the efficiency η₁ is equivalent to the reflectivity

Antenna Beamwidth

 A typical cassegrain antenna used for a radiometer will have a half-power (3dB) beamwidth given by the following formula.

$$\theta_{3dB} \approx \frac{70\lambda}{D}$$
 deg

Where D – Diameter of the antenna (m)

 λ - Wavelength (m)

The sidelobe levels of such an antenna will at 10GHz be about -35dB and at 94GHz about -20dB wrt peak

Detection(2)

Rewriting in terms of the temperature difference

$$\Delta T = (T_A + T_{sys}) \sqrt{\frac{2\beta_{LF}}{\beta_{IF}}}$$

• If the lowpass filter is implemented as an integrator with a time constant τ (seconds) then the bandwidth $\beta_{LF} = 1/2 \tau$ and the formula becomes

$$\Delta T = \frac{T_A + T_{sys}}{\sqrt{\beta_{IF}\tau}}$$

- □ Note that β_{IF} is not the 3dB bandwidth but the reception bandwidth which for a 2 pole RC filter β_{IF} = 1.96 β_{3dB}
- □ The temperature difference calculated here is for a unity signal to noise ratio. Hence if good detection probability is required then a larger ΔT is required

Skeet Characteristics Assume that the skeet motion is as follows Launched from a height of 25m Upward velocity 50m/s Horizontal velocity 10m/s Cone angle 10° Spin rate 2rps Radiometric seeker characteristics Aperture 50mm Operational frequency 94GHz IF bandwidth 2GHz

Noise Figure of a Single Sideband Receiver

The total noise figure of a cascaded receiver chain is as follows

$$NF = NF_1 + \frac{NF_2 - 1}{G_1} + \frac{NF_3 - 1}{G_1G_2}$$

For this case L=NF₁ L_M=NF₂ 1/L=G₁ 1/L_m=G₂ and NF_{IF}=NF₃

$$NF_{SSB} = L + L(L_M - 1) + (NF_{IF} - 1)L.L_M = L.L_M.NF_{IF}$$

