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Abstract

Main aspects of a coaxial helicopter flight characteristics analysis method, its main features and
correlations of analytical and experimental data are presented.

Russia is the largest producer and operator of coaxial
design helicopters. Though in Russia a lot of research
is being carried out in the field of coaxial helicopter
aerodynamics, occasional translations and publications
about it appearing in the West are rather limited, as Mr.
Coleman of Ames research center has once noted.

The present paper deals with modeling of
aerodynamics and flight characteristics of coaxial
helicopters. It contains a brief survey of publications
available in this field that have appeared in Russia and
analysis of current investigations carried out at Kamov
Company.

Before the beginning of 1980-ties evaluation of coaxial
rotor helicopters flight characteristics was mainly
based on equivalent single rotor theory and classical
theory of Glauert-Lokk further developed in Russia by
B. N. Youriev, A. N. Mikhaylov and M. L. Mil.
Coaxial rotors were replaced with a single rotor of
double solidity (B. N. Youriev, L. S. Vildgrube, V. N.
Shaidakov, G. N. Kvasha). Leading Kamov research
engineers L. N. Potashnik and E. A. Petrosian brought
these theories to a level of practical engineering
application. Empirical "coaxiality" coefficients
were introduced into design formulas for coaxial main
rotors and an empirical coefficient Kk was introduced to
evaluate the main rotor downwash angles near the
stabilizer. These coefficients depended upon flying
conditions (horizontal flight, climb, descent etc.) and
were "tuned" to a specific helicopter model. Inductive
velocity distribution over the main rotor disk was
considered to be constant or laterally variable
according to the triangle law (with Pain type gradient).

Specific nature of coaxial rotor aerodynamics and, in
particular, complexity of modeling inductive
interaction between the rotors restrained the
development of the coaxial rotor aerodynamics theory
for a long period of time. So, a transition from
equivalent rotor theory to coaxial rotor combination
theory took place only in the 1970-ties with the surge
of a linear disk vortex theory (V. A. Anikin) and a
linear blade vortex theory (V. S. Vozhdaev and, later,
B. N. Bourtsev). After that coaxial rotor aerodynamics
investigations based on a nonlinear vortex theory
started (S. M. Belotserkovsky's school).

Increase of helicopter airspeeds, disk loads and power-
to-weight ratio required new approaches to the problem
of coaxial helicopter flight performance analysis. Fig. 1
presents conditions of two closely positioned coaxial
rotors operation with one rotor operating in the
downwash of the other and airframe carrying elements
(wing, stabilizer, keel) conditions of operation

These conditions are essentially different and vary
depending upon the flying conditions. The airframe
elements can get into different zones of the main rotor
system  downwash and  their = aerodynamic
characteristics can essentially affect the coaxial
helicopter performance through its balance. In this
connection solution of a coaxial helicopter performance
analysis task must be undertaken with consideration of
the aircraft spatial balance based on solution of an
inductive interaction task posed both for the rotors and
for the rotors and the airframe. With the purpose of
solving these tasks a coaxial rotors disk vortex theory
was once developed that served the basis for
development of a method and a program for coaxial
rotors and coaxial rotor helicopter aerodynamic
characteristic analysis [1]. A rich experience in
application ~ of such programs for practical task
solution has been gained at Kamov Company (V. N.
Kvokov, B.A. Vassiliev).

Formulation of Task

A steady helicopter motion in a combined system of
coordinates is investigated. The c. g. motion is
examined in a system of velocity coordinates and the
helicopter rotation around the c. g. is examined in a
body axis coordinate system. Spatial balance equations
are obtained from known equations of motion.
Longitudinal motion with coaxial rotors torque balance
is examined, i.e.

X +X +Gsind =0,
CR PL
Y +Y —-GcoslI=0,
1 ) CR PL
( Mz +Mz =0,
CR PL

UP Lo _
MY CR +MY CR _MYPL'

where:

CR - stands for coaxial rotor system



PL — stand for the airframe

Let us introduce indices «UP» for the upper and «LO»
for the lower rotor.

Solution of system (1) gives helicopter attitude
parameters, controls for attaining this attitude and
power required. Solution (1) is based on a pattern of
successive approximations and is connected with
multiple appeals to analysis of the main rotor system
aerodynamic characteristics. This is a labor consuming
part of the method. So a procedure is developed that
allows to reduce the number of such appeals to the
minimum.

Based on A. N. Mikhaylov rotor theory in a system of
velocity coordinates, solution of control collective
pitch ¢, and rotor attack angle awmr definition task that
ensures specified propulsive X 0= "Xp -Gsinld and

lifting Y, =GeosM-Y, forces does no depend upon

the rotors cyclic control. The values of p_ and Yp_
themselves depend upon the solution of this task
because the airframe and its elements angles of attack
vary both under the effect of longitudinal control and
inductive flow wash. However, the variations are not
large: in the domain of operational angles of attack
pL(a) changes very little and Yp_ (a)value equals to
5...15% of the gross flying weight. As a result, with
successful zero approximation of X, and Y, we obtain
a nearly exact solution (1) with a minimum number of
appeals to balance of forces.
the of

From moment

MZ(,Z[Z)ZM

equation longitudinal

I
(;[Z = 0)+ M Z a, +MZ =0
ZCR PL

ZCR

we can define a 3, equivalent force longitudinal
deflection angle without recapitulation of the main
rotor system parameters.

In case of a coaxial design helicopter rotor differential
pitch angle g, required for directional balancing is

defined from the last equation (1).
Main rotor system aerodynamic characteristics

The disk vortex theory is used to define coaxial rotors
aerodynamic characteristics including their inductive
interaction. Let us first describe definition of inductive
velocity  properties and  specific  algorithmic
applications for formulas [3,4,5].

Inductive velocities. Let us examine a k-bladed right
rotor placed in a uniform steady flow. Let us put axes
of the right coordinate system into the rotor enter so

that axis y is perpendicular to the plane of rotation and
directed upwards and axis X is directed to the flow. The
rotor rotates around y axis at a rate of o.
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A vortex model is built as follows. The blade is
schematically presented as a radial segment of the
lifting line with circulation I' that is constant with
respect to radius p and azimuth 6. A continuous vortex
sheet shed from the blades at velocity V forms a spatial
washed screw shaped plane of constant pitch. The
vortex column axis forms angle o with the rotor plane.
When the vortex column goes down from the rotor
o<0.

Let us find an inductive velocity value in an arbitrary
spatial point {X,, y., Z*} and write its coordinates using
the values of a polar radius value and azimuth angle y

calculated from the negative half-axis 0X in direction
of the rotor rotation

(2) Xy =—TCOSVY, Y=Y, Zy=r1siny.
Let us use relative coordinates and mark them with an
upper dash. The linear dimensions will refer to rotor
radius R, velocities - to @R and circulation - to k ®R>.

The vortex surface S equation set in a coordinate form

0 = —Vcosb — Ecos(I/I - 8),

(3) _
3 =v9sinG, x=csin(-9),

can be substituted together with (2) into Bio-Savare
equation and we can pass to time averaged inductive
velocities. As a result we get:

}—Iai (€. r.5.v. V.6 ke,
0

1=123, a,=x%,a, =y,a; =2,

| 2T CcosH(LsinG - y)+ VL _sinG

IX :% J. * ]

0 L +Lxcos6
I = 1 2T Gcoshcosa C° —HCOS(I/I_‘4’)+VLZCOS6
Y on I * *

o L +LXcos6 L(L +LXcos6)

1 2™ —CsinH(Lsin6 —y)+ 7(370056 + LXsin6)

z"on

I
*
L(L + LXcos6]

L=y +17 ,1=4/c*+F - 2ctcos(M - m),
L, =pcos®@—rcosy, L =psin®-Tsiny,
* i .
L =L-Yysin6
Functions I, are effect functions reflecting inductive

interaction of the rotor vortex structure of singular
intensity in point (1). For a time average inductive



velocity value caused in point (2) by lifting lines

(vortex bottom) we obtain: XX = —I—RXdE,
r 4TCV dc k 1dT
iz - J‘ Zd—
X, =—X sinm, X_ =—X 4COSII, 1 r 4nr  de
r 4TCV dC k dr
where xX = —[—sn*dc,
kK 'dT sn 4nr  dc
xX —=[—Cn*dc,
cn ~ 47tV dc k LdT
x) =—[—=SnYdc,
Jdr ljcosI/I Lu)dI/I B kK LdT oy S Anr de
(b 4p dc 7t0 , % ch=m({ECn dc, C 1dT
[y +1 } x% = —[—Cn“dc,
kK 'df. , cn 4nr  dc
x4 =——[—Sn“dc,
St 4nv  dc

The integral in brackets can be presented through
ecliptic integrals

Kernels R, Sy, Cy, are harmonic components of effect
functions. Let us introduce typical integrals

{}= : 3[2‘1‘2E<k)+1<<k>],
it

1-k?
k [?2+(c+r M _(_1)n+12?COSH(PW 40
n T o L n
where 12T
N, = (-1) - [cosneW, d®
kz _ 4cr (6) 0
N . T
([C+1) +y° M;:(_l)nﬂgjmwnd@
T
Numeric realization of formulas (4) is complicated by i n )
certain singularities in sub-integral expressions. It can Ny = (_ 1) . [ icosnpW ,d©

be eliminated if we use Fourier series expansion [3,4]. 0
Let us present the inductive velocity components as:
Now kernels R, S, C, can be written as

(5) X (Eym)=x2(5y)+ . .
o Srl = thLMrl , Sn = Mn
+n§1 Xa1 (r ¥kos nm+x (r ¥ksin nm} , 1 ( ; i ) sind N, +yM
= Sn®=—\M _ -M —a 4
2 n-+1 cos6
i=1,2,3, i i
CX:l(Mi +M1 ) ys1n6Mn+Nn’
where n 2 n-— n+1 cosoO
_ai  k T ai—  _ai  k 'd[ai Y- _yM!
ai _ ai ai _ dl . aj cY =—yMm! +
*r 4TCV o] de w9 Xen = 4V . dEICHdC - n = ""n 2¢c0s6
i i
<ai __k d—rlald_ Iai_izﬁ d X[Mn—l_M +1 +Sm6(Mn+1+Mn—1)}
sn 4TCV dc sn I on al =
0 Mi
cz -1
. 2T . 21 n '
Iail _1 [T ;c0s nydu, Iarl1 _1L [1,;sin nydur, coso
T n 1 z_1(~z x
° ° R -g(epest) 1=5( )
al=X, &2 =Yy,a =2, . 1
Ryzl—lM1 (M +sm0cM1)
) ) ) 2 % 2cos6
Let wus integrate in (5), introduce new
variables ¢ = %,? = % , and let the wave go further. where
Then

. n
o[ L1 i) et [
n 1 L /1+sin0
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sin _ csinl cos _ccosl—1
¢ 1 ¢ 1
1=4c’+1-2ccosll, L= 12+y2,
. 1, LsinG >y
i= ,
-1, Lsinb <y

Formulas (7) contain an extracted singularity in sub-
integral expressions. It is described by function i(®,
p,y,a), that shows a lst order discontinuity at the
border of the vortex cylinder. From the function
properties it follows that the whole space is divided
into two parts: in the first sub-space function
i(®@)=const retains its sign at ®<[0,n] and in the
second sub-space it shows a discontinuity at
0, = arg(L(®)sina. = y), point but retains a constant

value in domains [(0, Ny) (U, n)J.

Let us examine a number of cases [5]

Case E — calculation of inductive velocity in disk plane
y=0. Here

i* =sgn(6),  i"sin6 =]sin6|

WE = cosO n:WE(G)
n l+|sin6| n*”

T
M =(—1)“+1W§(6)§j@dl/l,
0

(8)

T
T
N = (-1 W (6)5(j)cos nedH,

and we get(-1)"W"(6)= Kg ,where k2 is defined in

n 0

(6]
X _ E QY _
Sn—tg6Mn, S) =

-E
Z_l_[ E _\E E]
Sn =3 (Mn—l Mn+1)+2tg6Nn ,

-E
CX — _1_|:(ME +ME ) 2 NE:|
n 2 n-1 n+1/ cos6 n
1 E 1 E E
9 Ch=5|M W)}
n- n+1W1E(6) n-1"1
-E -E
0
cZ - 1 E x __17cos .
N coso6 1N 1+|sin6|ﬂ0 )
z i"cos6

(c).

v _ __iteos6
RE=ngle) RO =g
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where

l,ec>1 K(c),c<1
2
_J1 — -
e L IN T
0,c <1 c \c

Connection between the components in case E is
simplified:

X _ ooy
SX = g6SY,

E
z_L Ifgy _gY E
Sy = B [(Sn—l Sn+1)+|2tg6|Nn]

X = it y ) 2 E
-—— +S +—N_ |,
(10) 2 n+1)" cos6 n}
1
cY=_|g y E
n_2[ n+1 Sn-lwl (6)’
o7 - it X _ ifcos6 y
0 cos6 n l+|sin6|
z_ itcos6 ﬁ
1+|sin6| 2
Integral Mfl has been calculated in [6], N; is
. For an

similarly calculated for components ix,iy

azimuth average inductive velocity we obtain the final
expressions:

<Y - kf(f) —X sgn(6)cos6 y
ro 4pv ro 1+|s1n6|

— ko 6 )cos6 L dF

Xf _ Sgl’l( )COS ( )dC

4pV 1+|sm6| o

If in Case E we take a=0 (flat vortex sheet), harmonic
connections are simplified and the x-th and the z-th
components are expressed through the y-th component.

_ _ 1 _
XX = 0, Z - -X
sn sn 2 sn—1 Tsn+1
=y _ =z -z _ _V_y
*en T %sn> Fen T *$n -
_ _ _ 1
X = xy, zZ__gY.
T T T 0

The second important case is Case L — calculation of
inductive velocity from rotor flat vortex structure
(a=0). Here:

n
L—
i"=-sgn(y) W= (—1 |y|} . ity =~y



SX=0,8Y =M",
n n n

sz=i{l(sy -sY )-|y|sy}
n 2\ n—l1 n+i n

o i dfeY 4sY Junt
n 20 n—=1 "n+1 n |’
CY = —i's?
n n’

The components are also expressed through two typical
integrals:

T

2 "rcosng
My =(-1)" +1—ITWrleI/I,
0

2 T
L _ 1 L
NE =(-1) ; [cosneW dH,

n
0

The relations between the harmonics are:

X ooixY, %2 =YY,

T T cn 1 sn
Y —lxz

cn sn

y i [(xy =y y
Xn = 7[(Xsn 17%n + 1) - 2|y|xsn} ’
-z :liz

r 2°co

Integrals er‘l ,N; are reduced to a combination of

polynoms and complete elliptic integrals of three
genuses.

Case B — calculation of inductive velocity when the
vortex sheet and the reference point are located at
different disk sides ( y sina <0 ). Here

B _ B _ wE wl
1~ = const, Wn—Wn Wn

The variables also get separated

MB — WEML NB — WENL
n n n’ n n n

Equations of connection between the harmonics now
look like:
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cY
R* =—i®W'RY, RY =;[0(c)+70,

y
RZ=i®wE 0 sX-tg68Y, SY=MB,
1 2 n n n n

. . B _ B
o :i $y gV .\ 2|s1n6|Nn |y|Mn
n 2 n-—i n+i cos6 ’
B NB — |y sin6|SY
Cﬁz—l— (SY_ +8Y )+2M’
2 n-—i n+i cosb
CcY =ylsY + x
n |y| " 2cos6

{1, sy <51, 45y )]

cz gy
N coso N

In the general case of y sina > 0 the inductive velocity
components are expressed through four typical
integrals. The integrals present combinations of
algebraic functions and incomplete elliptic integrals of
the Ist, 2nd and 3rd genuses [5].

Let us introduce functions

- xX(§,T,6
(11) T
PP

ié’(?zo,fﬁ)’

as a ratio of an average inductive velocity in the plane
located at 'y distance from the disk to eigen velocity at
y=0 for typical normalized circulation.

In fig. 2 and 3 these functions are presented. The
graphs illustrate the velocity properties — in y-sina<0
domain velocities do not depend upon a. Zhukovsky

theory (a = g) correlates well with that of Vildgrube
(a=0).

Vortex cylinder declination angles

In the plane of each coaxial rotor, besides eigen

inductive velocity, there also exists an additional
inductive velocity (fig.4).

LO
— CT

For thrust coefficient C. =CYF+ CLO, t
Ty T T

C CuP
T

distances between the rotors y*, vortex cylinder



declination angle o; and vortex shedding velocity V,
we have a solving system

5 UP UP __ UP _—UP _—UP-LO _ _UP
V1 cos61 =M Xy —Xy =My
T LO LO _ 10 —LO —LO-UP _ 10O
V1 cos61 =M Xy —Xy My
V_sin6 ¥ +x VP 4x UP-LO
up_ 0 ® € y 'y
tg61 =
xPcoso VP
1 1
V_ sin6 0 +xM0 4xL0-UP
Lo _ © ¢ y'vy
tgo =
x9cos6 0
1 1
where

C Coote
IR R (T
—LO.UP _ Cthc qY(_y*,fIﬁ}ﬂ’)
v A+t N
ZUP-LO _ Crs qy(y*, 1:1’ 61LO)
y 4(1+tC)V1LO
o _ CTzsgn(6lLojk(6lLoj
X 4(1+tC)V1LO
o CTZtcsgn(61UP)k(6lUP)

x 41+t NP

UP ) X = F UP
oo up Cthc sgn(61 )k(61 )q (—y,,<,I“I,61 )
X =

X ) 4(1+tC)V1UP
—UP-LO _ _ Crs sgn(61L0)k(6fojqx(§*,fl,6foj
X 4(1+tC)VILO '
k(6)— —cos(6)

1+ |sin6|

Solution  of  the
system with respect to a; u V; is reached by the
method of subsequent approximations and converges

: . LO ~UP
fast. Fig. (5) shows functions 61 ,61 = f(Voo,oce).

For applications it is suitable to find an average angle
for the lower rotor and the whole combination
UP , ~LO
_07 o7
¢ 2

It is interesting to note that the declination angle for an
equivalent single rotor considerably differs from o.
There is an approximated formula for o

where

Solution of the task connected with the vortex cylinder
declination angles is a part of the coaxial rotors mutual
induction task.

Definition of circulation. To define average circulation
along the blade section circumference, let us use
designations of [6, page 52-53]. For a rotor operating in
the field of alternating velocities, similar to formula
2.83 of [6] we can write:

— a B | M2

= °§ @er{1+;]+M[tg6MR +0,, 1+
1 2T _eigen | —add \wo

+2—ch J (Xy ; +Xy )Wdﬂl

where:

0p =9, +/0—ka,,

U,=H +ka, I/Ize =0, +kb,,
Assuming the additional velocity having been induced
by the neighboring coaxial rotor of opposite sense of
rotation we obtain a system of two integra-differential

equations of coaxial rotor blade circulation that can be
converted to the following

2
= = _ M
Fq(r):Bq(r R r{l+j}+M[tg6MR+®2€]

q 2r
(12)
1 _
- K T K (8:254:6,, Jd
4pv, P qe q e
c0
1,q=2
q=12 ={ =
2,q=1
where
a_b
B() = ——=
2+ aoo_b “—2 !
47V 72 l+‘sina
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d _ - _ _ _
:E{Ig(c’r’(_l)qu*’6lp)_%Igl(csra(_l)qu*s6lpj:|

Solution (12) is reduced to solution of linear algebraic
equations system looking like A-[4=Cgq. Using vector
Cq decompensation to basic functions

- q qap q qap N4
Cq_(PoqN(p(r)+(p0PN(p +o N +o N~ + N/

solution (12) can be conveniently sought in

(13)

T =¢o T4 T T +79® |+ 79
Fq —(quF(p+(p0PF(p +6Q(Fm+1“OL )+F0

where
T9=A"'Nd TI = A7'NIPTY = A-IN9
¢ 09 ¢ a o
TP - A-'N9 T9 = A-IN9
rd = A7'NI TI = A'NY,
q=12

Through these functions and Fourier series expansion
coefficients, inductive speed flap motion 1st harmonic
coefficients are defined. Fig. 6,7 shows blade
circulation and coaxial rotor flap motion coefficient
functions.

If required, blade flap motion can be specified through
numeric integration of blade flap differential equations.

At y*=o0 (12) are transformed to relations for a single
rotor. Fig. 8 shows correlations of inductive velocity
fields under the rotor obtained through calculations
under (5), (12) and in Pavlov and Radchenko
experiments.

Peculiarities of coaxial rotors in axial conditions.
While for a single rotor inclusion of wake compression
and vortex variation does not change the integral
characteristics  considerably, for coaxial rotors
accounting for these factors becomes crucial.

To account for the vortex structure nonlinearity,
functions of rotor wake compression and flow
acceleration are introduced. For a single rotor these
functions are easily obtained from the flow equation.
For a coaxial rotor the lower rotor vortex structure
follows that of the upper rotor equidistantly from y*
to oo.

The calculation method for coaxial rotor aecrodynamic
characteristics in axial conditions including the flow
compression has been developed at Kamov Company
by V. A. Anikin and is described in [7] where there are
also presented coefficients of correction offered by
V.N. Kvokov for tuning the model for flight tests. As
shown by the experience of coaxial rotor analysis
program practical application, these coefficients are not
required in the majority of cases and the mathematical
model gives satisfactory results both for single and
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coaxial rotors. Fig. 9 shows coaxial rotor drag polars
based on analytical and experimental results obtained
by V. F. Antropov. At fig. 10 single rotor drag polars
obtained at Kamov Company through experiment and
analysis are presented.

Calculation of the main rotor system forces and
moments. When defining the coaxial main rotor forces
and moments integration of all known relations for
elementary rotor forces and moments [ ] with
consideration to re-distribution of angles of attack in
the blade sections caused by additional inductive flow
from the neighboring rotor vortex system and changes
of the blade flap motion is used:

k 2701
Cr=— fbwf(cycosgl +CxpsinBljdfdm
2n
k 271
C, =— | ijlz[(CXPCOSB1 —CysinBl}inm
21 g0
(14)
- (CyCOSBl + CxpsmBl)cosmsmB]drdm
k 27T
my =— ) jbelz(CXPCOSB1 —CysinBl)x
2n° o0
x cos Bdrdys

To define Cy and Cxp a flat section hypothesis was
used along with the blade profile characteristics
obtained in ADT tests.

The rotor aerodynamic analysis is divided into two
parts: 1) definition of vortex cylinder inclination
angles, circulation, blade flap motion and inductive
velocity field; 2) calculation of forces and moments
and, if required, specification of blade flap motion.

For the angle of attack in the blade section we have [6,
page 53]:

0= (p(r)—EB +o, P(m)+

Vsing_ +X. — fd—B + MCOSIII
B yy dmr

+ arct

W,

*

For inductive speeds in each rotor lane we have (5),
(12):

d(z 9P (z
X r,m)+x (T, m
9o+ e
As a result, using experimentally obtained relations
Cy = f(6, M, Re),CXp = f(6, M, Re) we can define

elementary forces Cy (r, 111), CXp (r, IH) in each section

(r, HI) and further under (14) the rotor forces and
moments.



Calculation of forces and moments on the airframe.
To calculate forces and moments on the airframe the
results obtained in the ADT tests of an airframe model
are used. To recalculate the airframe element
parameters to full scale parameters and to account for
the influence caused by the main rotor system,
formulas (5) for all inductive velocity components are
used. Besides, in the angles of attack of the i-th
airframe element a wash from the rotor rotation is

accounted for through JI6 = & X, + 3 z,.
v v

Definition of 82’ realized on the aircraft M,=0 is

performed according to a subsequent approximation
pattern.

Results of modeling. A large experience in modeling
has been accumulated during long standing application
of aircraft characteristics analysis programs. The
created mathematical model ensures an acceptable
level of accuracy and is well applicable for solution of
a wide range of application tasks. Figs. 11-17 show
comparison of coaxial helicopter main flight
characteristics obtained in flight tests and by analysis.
Fig. 11 shows required power, fig. 13 — drag polar at
hover. Figs. 14-16 show balance relations in horizontal
flight, at climb and descent and fig. 17 — the same for
tail forward flight. The analytical and experimental
data correlate well.
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