Jump to content

Как не надо обращаться с двигателем


Yo-Yo

Recommended Posts

  • 3 months later...

Вопрос по ресурсу двигателя - если в сетевой миссии отлетать на боевом режиме (61-3000) положенные 15 мин., после посадки и нового взлёта с того-же слота (без ремонта), чего ждать от двигателя? Т. е. сохраняется ли "усталость" в таком случае, и если сохраняется, поможет ли ремонт? Почему спрашиваю - летал некоторое время на сервере RAF на Ка-50, там сохранялась усталость лазерного дальномера (именно в том-же слоте).

Два главных вопроса к ЕД:

Зачем у Мустанга в ДКС винт от Ми-8, который разгоняет его с динамикой Спита при одинаковой заправке и бОльшей на четверть массе?

Почему у FW-190 топливо расходуется с одинаковой скоростью из переднего и заднего баков и в итоге сигнальные лампы загораются не впопад?

ps Дмитрий, если Вас заставили прикрутить винт от Ми-8 к Мустангу - подавайте знаки, мы Вас спасём!

Link to comment
Share on other sites

  • ED Team
Вопрос по ресурсу двигателя - если в сетевой миссии отлетать на боевом режиме (61-3000) положенные 15 мин., после посадки и нового взлёта с того-же слота (без ремонта), чего ждать от двигателя? Т. е. сохраняется ли "усталость" в таком случае, и если сохраняется, поможет ли ремонт? Почему спрашиваю - летал некоторое время на сервере RAF на Ка-50, там сохранялась усталость лазерного дальномера (именно в том-же слоте).

 

Должно сохраняться, но после боевого режима надежность будет снижена незначительно. Что там с ремонтом, пока не знаю.

Ніщо так сильно не ранить мозок, як уламки скла від розбитих рожевих окулярів

There is nothing so hurtful for the brain as splinters of broken rose-coloured spectacles.

Ничто так сильно не ранит мозг, как осколки стекла от разбитых розовых очков (С) Me

Link to comment
Share on other sites

Yo-Yo, спасибо, ещё назрел вопрос по двигателю, конкретно по регуляторам подачи горячего и холодного воздуха в карбюратор - для чего нужны вроде понятно, а как влияют на работу двигателя не уловил :D - при разных комбинациях как работал без проблем, так и работает (подумал, при закрытом холодном глохнуть должен - ан нет), нельзя ли чуть подробнее объяснить их принцип действия?

Два главных вопроса к ЕД:

Зачем у Мустанга в ДКС винт от Ми-8, который разгоняет его с динамикой Спита при одинаковой заправке и бОльшей на четверть массе?

Почему у FW-190 топливо расходуется с одинаковой скоростью из переднего и заднего баков и в итоге сигнальные лампы загораются не впопад?

ps Дмитрий, если Вас заставили прикрутить винт от Ми-8 к Мустангу - подавайте знаки, мы Вас спасём!

Link to comment
Share on other sites

  • ED Team
Yo-Yo, спасибо, ещё назрел вопрос по двигателю, конкретно по регуляторам подачи горячего и холодного воздуха в карбюратор - для чего нужны вроде понятно, а как влияют на работу двигателя не уловил :D - при разных комбинациях как работал без проблем, так и работает (подумал, при закрытом холодном глохнуть должен - ан нет), нельзя ли чуть подробнее объяснить их принцип действия?

 

Во первых, горячий воздух подается из-под капота, т.е. практически без скоростного напора, соответственно, высотность двигателя на больших скоростях получается меньше. Во-вторых, просто всегда понижается мощность из-за уменьшения плотности нагретого воздуха.

В-третьих, начинает на больших высотах врать высотный корректор карбюратора.

Поэтому подогретый воздух имело бы смысл использовать только тогда, когда вход в карбюратор так забивается льдом, что вышеперечисленные минусы уже все равно лучше имеющегося положения вещей. :)

 

А пока - воздух горячий реализован, а обледенение отложили. Точнее обледенение карбюратора тоже не проблема, хотим сделать не просто по температуре, но еще и по видимой водности в атмосфере - облака, например, или туман.

Ніщо так сильно не ранить мозок, як уламки скла від розбитих рожевих окулярів

There is nothing so hurtful for the brain as splinters of broken rose-coloured spectacles.

Ничто так сильно не ранит мозг, как осколки стекла от разбитых розовых очков (С) Me

Link to comment
Share on other sites

Спасибо, всё понятно, эх.. капнул Ваш мустанг - полез изучать принцип работы авиационного ДВС :D , для всего этого очень не хватает серьёзного проекта с личным парком (привязкой к нику ресурса), перегонкой техники - были такие сервера на базе Ил-2, да и сейчас есть наверное (давно не летал). Учитывая глубину проработки, моторесурс, и т. д. - это было-бы что-то, ну да подождём - может когда появится...


Edited by -Slayer-
  • Like 1

Два главных вопроса к ЕД:

Зачем у Мустанга в ДКС винт от Ми-8, который разгоняет его с динамикой Спита при одинаковой заправке и бОльшей на четверть массе?

Почему у FW-190 топливо расходуется с одинаковой скоростью из переднего и заднего баков и в итоге сигнальные лампы загораются не впопад?

ps Дмитрий, если Вас заставили прикрутить винт от Ми-8 к Мустангу - подавайте знаки, мы Вас спасём!

Link to comment
Share on other sites

  • 1 month later...
Guest =YeS=CMF

Хочу разобраться:

Если я набираю высоту на 46/2700, то мне нельзя РУД двигать вперед далеко, несмотря на то, что наддув падает пока не включилась вторая скорость нагнетателя, так? А как тогда понять сколько можно дать наддува на высоте, например 10 000 футов? Только экспериментами выяснить и запомнить?

п.с. Ну не буду же я каждый раз набирать высоту на 45/3000 например... :-)

 

Добавлю: только что летал на 46/2700 и РУД был в упоре вперед во время набора, когда не хватало наддува, пока не включилась 2-ая скорость... двигатель внезапно заклинил когда наддув был 46 а обороты 2700 на высоте 26 000 футов (2-ая скорость нагнетателя включена). Я не понял =)


Edited by =YeS=CMF
Link to comment
Share on other sites

При подъеме на высоту атмосферное давление падает и автомат двигает дроссельную заслонку в сторону открытия, поддерживая МП постоянным.

 

На критической высоте для 61" сервопоршень и РУД оказываются в крайних положениях на открывание и заслонка полностью открыта.

 

Когда устанавливается МР существенно меньшее, например, 46" (режим без ограничения времени работы – 2700 об/мин), то с ростом высоты наступает момент, когда сервопоршень доходит до крайнего положения на ОТКРЫТО но дроссельная заслонка при этом до конца не открыта, т.к. РУД находится не в крайнем переднем положении. Для поддержания требуемого МР приходится начинать подавать РУД вперед, и по достижении критической высоты он оказывается в крайнем переднем положении. Учитывая то, что нагнетатель переводится на вторую скорость автоматом, главное – не забыть прибрать РУД назад после переключения. Иначе набор пойдет на 61" – 2700. Не смертельно для двигателя, тем более на хорошем бензине, но – не положено.

.

Gigabyte Z690 UD DDR4 /i9-12900KF /64 Gb- G.SKILL Trident  DDR4 4000 МГц / Palit GeForce RTX 3070 Ti GameRock 8GB /Corsair HX1200 1200W 

DCS A-10C Обучающий урок "Концепция HOTAS" (RU)

DCS P-51D Руководство пилота

Обучающие миссии для Ми-8 (Радиооборудование)

Link to comment
Share on other sites

Guest =YeS=CMF

Да, спасибо, я уже всё по десятому разу перечитал... но движек то клинит!

Может быть в 1.2.7, или следующих патчах, будет старый забытый фикс (помните про случайный клин?)?

Link to comment
Share on other sites

Недавно на сервере клуб весёлых пилотов набирал 10000 метров на режиме 27 на 46 по мере набора с падением наддува подавал руд от себя , а потом ещё и прм пришлось двигать , в итоге все ручки были вперёд до упора , всё было в порядке , не менее получаса так летел.

Link to comment
Share on other sites

Guest =YeS=CMF

Главное, я тоже же набирал со взлетом 12 км, и тоже всё было хорошо! Я нифига не пойму =(

Link to comment
Share on other sites

Честно сказать на высоту редко залезаю , но и на низких высотах было ни с того ни с сего бах и клин, хотя температурный режим в норме ?

Link to comment
Share on other sites

Guest =YeS=CMF

Да, вот ни с того ни с сего. =( Еще с того времени как боты были суперменами, когда я только приобрел Р-51, слежу за температурами и летаю на правильных режимах наддув/обороты, не даю повода движку сломаться! Даже взлетаю на наддуве 50 inHg. Бывает просто так бахнет, аж подскакиваю на стуле =))))

Link to comment
Share on other sites

  • ED Team
Да, спасибо, я уже всё по десятому разу перечитал... но движек то клинит!

Может быть в 1.2.7, или следующих патчах, будет старый забытый фикс (помните про случайный клин?)?

 

Нужен трек... тогда можно смотреть. Если действительно баг... пока приходит в голову только одно - когда наддув до перехода на вторую скорость падает, радиатор прикрывается. При включении второй скорости сразу образуется MIL, радиатор просто до перегрева не успевает открыться. Если еще и скорость в наборе меньше 180, то не перегрев ли это?

 

Я такое не ловил ни разу, хотя часто запускаю миссию, где надо крутиться с ботами на высоте, где все время наддув переключается.

Ніщо так сильно не ранить мозок, як уламки скла від розбитих рожевих окулярів

There is nothing so hurtful for the brain as splinters of broken rose-coloured spectacles.

Ничто так сильно не ранит мозг, как осколки стекла от разбитых розовых очков (С) Me

Link to comment
Share on other sites

Guest =YeS=CMF

Нет, Yo-Yo, не перегрев - наддув смотрел, температуру тоже. Я готов к переключению нагнетателя и жду этот момент, иногда в ручном режиме включаю выше 15 тыс. футов.

Трек приложу, как только запишу.

Кстати, у Вас внутренняя версия может быть даже новее 1.2.7, так? Возможно эта проблема устранена, только в патчи еще не попала?

Link to comment
Share on other sites

  • 1 month later...

Интересно:

Авиационные двигатели внутреннего сгорания. Эволюция.

Под редакцией - Сергей Иванов "The Russian Engineering" - 2010 ©

 

 

Начало пути

 

Авиационное двигателестроение началось в начале прошлого века. И зачинателями моды стали ротативные двигатели. Это звездообразные двигатели воздушного охлаждения. Охлаждению на малых скоростях полёта, типичных для авиации того времени, способствовало вращение цилиндров с картером относительно неподвижно закреплённого на моторной раме коленчатого вала. Почти всю Первую Мировую Войну такие двигатели превосходили по удельной массе двигатели водяного охлаждения, поэтому на большинстве истребителей и разведчиков стояли эти моторы.

 

У ротативных двигателей были крупные недостатки, главным из которых была практическая невозможность достижения мощности более 100 – 130 л.с. Препятствием служили трудности с увеличением размера и числа цилиндров, увеличением нагрузки от центробежных сил и гироскопического момента на картер при увеличении частоты или компоновке второго ряда цилиндров, большие потери мощности на вращение оребрённых цилиндров. Ротативные двигатели страдали очень большим расходом масла. Это было связано с тем, что откачать масло из вращающегося картера было невозможно и оно буквально вылетало в трубу.

 

Проблемы с ротативными двигателями привели к тому, что к концу ПМВ самыми популярными стали двигатели с водяным охлаждением. Которые хоть и не победили ротативных по удельной массе, но по мощности превзошли в несколько раз.

 

"Жидкий" или "воздушный"?

 

Как известно, в двигателестроении в период Второй Мировой Войны прижились два типа двигателей. Рядные, чаще всего V-образные, двигатели жидкостного охлаждения и звездообразные двигатели воздушного охлаждения. Каждый из этих типов двигателей имеет свои достоинства и недостатки. Конкуренция между двумя типами двигателей на протяжении всей их истории весьма занимательна.

 

Так "воздушники" проще конструктивно (нет рубашки охлаждения). Поэтому они дешевле в производстве, проще в обслуживании, надёжнее. Так же из-за воздушного охлаждения живучее. У «жидкостника» температура охлаждающей жидкости ограничена точкой кипения. И потому для отвода еденицы тепла через радиатор требуется больший объём воздуха, чем для отвода еденицы тепла от «воздушника». Ибо температура головок цилиндров «воздушника» раза в два выше, чем температура водорадиатора у «жидкостника».

 

"Жидкостники" имеют другие достоинства. Малый мидель даёт плюс в аэродинамике; из-за острого носа и потенциальной возможности применения мотор-пушки улучшается компоновка фюзеляжного вооружения. В минус «воздушникам» в 20-е гг. была и неотработка капотировки. Верхом аэродинамики считалось кольцо Таунеда.

 

При равной литровой мощности, из-за присутствия рубашки охлаждения и охлаждающей жидкости, "жидкостник" будет тяжелее воздушника. И самолёт с "воздушником" будет легче. Для манёвренных самолётов, и в горизонтальной и в вертикальных плоскостях, были оптимальней «воздушники», для скоростных «жидкостники».

 

Так что каждый из типов двигателей имеет свои достоинства, объясняющие их разнообраное применение. Пока моторы были слабомощные, в истребительной авиации на первое место выходил их вес. Поэтому в 30-е годы моторостроение вступило с большим распространением "воздушников". Тут правда сыграла и простота их производства.

 

Расцвет "жидкостников"

 

В начале 30-х годов "жидкостники" сделали резкий скачок. А всему виной было принудительное охлаждение, позволяющее форсировать двигатель. Жидкостное охлаждение позволяло хорошо отводить тепло от двигателя. Двухрядные "воздушники" же столкнулись с проблемами отвода тепла от задней кромки поршней второго ряда. Сначала "жидкостники" обогнали "воздушников" в литровой мощности. А затем в удельной массе!

 

Рассмотрим на примерах.

Испано-Сюиза 12Ybrs: мощность - 860 л.с., сухой вес - 470кг.

Райт "Циклон" R-1820-F3: мощность - 625 л.с., сухой вес - 435 кг.

Гном-Рон "Мистраль-Мажор" 14Kdrs: мощность - 850 л.с., сухой вес - 600 кг.

Правда надо учесть, что даётся сухой вес моторов. У жидкостников система охлаждения может прибавлять до 10% веса мотора. И если однорядные звёзды впряглись в гонку с "жидкостниками", то двухрядные звёзды резко просели.

 

Пока двигатели были слабосильными, а скорости самолётов относительно небольшими, вес мотора играл значительную роль. Так И-16 с "Циклоном" ещё выигрывал в Испании у Bf-109B. Но развязка наступала неизбежно. Во второй половине 30-х моторостроение сделало ещё один шаг и И-16 стало уже проблематично противостоять мессеру с DB-600.

 

Но не только увеличение мощности сыграло свою роль. Резкий скачок сделала и аэродинамика водорадиаторов. Водорадиаторы мигрировали в туннели. Туннели стали утапливаться в фюзеляж и крылья. Применение этиленгликоля и воды под давлением позволило уменьшить площадь водорадиаторов на 40-50% (и вес охлаждающей жидкости).

 

Неизбежно в моду вошли истребители с моторами жидкостного охлаждения. Мессершмитт и Спитфайр были первыми. За ними потянулись другие. СССР, Франция, США тут же бросились догонять Германию и Англию. Лишь Италия и Япония остались возиться с "воздушниками". Ибо... так и не сумели создать отечественный мотор жидкостного охлаждения, а с лицензионным производством чужого опоздали.

 

Но "воздушники" не исчезли. У них оставались определённые преимущества и они нашли свою нишу. Живучесть и надёжность позволила им закрепиться в бомбардировочной и штурмовой авиации. Из-за эксплуатационных преимуществ авианосная авиация США продолжала использовать только "воздушники". До следующего хода надо было подождать несколько лет... К тому же у набравших ход «жидкостников» был скрытый порог – малый литраж. Малый объём цилиндра позволял легче бороться с тепловым режимом и быстрее доводить двигатель. Но за высокие удельные характеристики пришлось заплатить малой мощностью.

 

Звёзды наносят ответный удар

 

Но в начале 40-х всё опять переменилось. И имя этим переменам было - мощные двухрядные звёзды.

 

К этому времени удалось справиться с тепловым режимом двухрядных звёзд. Справлялись с этим по разному. Раздвигали ряды звёзд, что выводило второй ряд из затенения первым, увеличивали мидель двигателя, вводили принудительное охлаждение вентилятором, увеличивали объём маслорадиатора (у "воздушников" бОльшая теплоотдача в масло), увеличивали оребрение цилиндров и оптимальнее подгоняли дефлекторы. Но так или иначе мощные звёзды получились во многих странах на этом рубеже. Решение теплового режима позволило звёздам если не сравняться, так догнать, сократить отставание от "жидкостников" в удельной массе. Хотя "жидкостники" и сохранили преимущество по запасу форсирования.

 

Но главным преимуществом звёзд была мощность. Что решилось банальным преимуществом в литраже - звёзды были просто объёмнее. Увеличить литраж двигателя без увеличение миделя позволил бывший "порок" - второй ряд поршней. Так М-105П выигрывал по удельной мощности у М-82А. Но Ла-5 c М-82А, выигрывал y ЛаГГ-3 c М-105П, даже несмотря на убогую аэродинамику!

 

Малолитражные "жидкостники" с этим смириться не могли и уже давно (заранее) бросились догонять. Самым простым решением было спарить два двигателя на один редуктор. Решение оказалось слишком сложным и потому тупиковым. Ни у кого так и не получилось.

 

Более продуктивным было собрать несколько блоков цилиндров на один коленвал (Н- и Х-образные двигатели). Но такой многоцилиндровый двигатель тоже получался слишком сложным и ненадёжным. И получился только у англичан! Тот самый Сейбр. За конструктивную сложность пришлось заплатить малым ресурсом. К тому же при таком решении "жидкостник" терял своё преимущество - малый мидель. Так что как только англичане довели свой мощный "воздушник" - Центариус, о Сейбре благополучно забыли.

 

Но не только одной мощностью брали "воздушники". Удалось улучшить аэродинамику звёзд за счёт исследований по капотам (капоты NACA) и применением длинного носка картера. На фоне таких успехов происходит реинкарнация истребителей с моторами воздушного охлаждение. Ла-5, ФВ-190, Р-47 и проч.

 

Возвращение "джыдая".

 

Отыграться "жидкостникам" удалось в самом конце Второй Мировой Войны. За увеличение литража стали бороться другим путём. Увеличили объём имеющихся 12-ти цилиндров путём увеличение площади поршня. В разным странах примерно синхронно появились "большие горшки": АМ-42, Гриффон, DB-603, Юмо-213.

 

Но появились эти двигатели поздновато, когда решающие воздушные сражения уже отыграли и шло уже добивание противника. И применение этих двигателей на имеющимся фоне любым из противников никак не меняло баланс сил. Припозднились.

 

К концу войны вдруг выяснилось, что увеличение мощности моторов приводит не к уменьшению, как раньше, а к увеличению удельной массы моторов. Форсаж не может продолжаться до бесконечности. В конце концов увеличение нагрузок на детали моторов привело к их усилениям, уже не компенсирующимся возрастанием мощности. Маятник качнулся назад…

 

Раскрутить и поделить...

 

Одним из простых способов увеличения мощности двигателя при сохранении его объёма, является повышение числа оборотов коленчатого вала. Например: мотор М-11 изначально при Частоте вращения коленчатого вала, 1650 об/мин достигал мощности 110 л.с.; после модернизации, Частота вращения поднялась до 1950 об/мин, а Мощность, до 180 л.с., т.е. Литровая мощность повысилась в 1,5 раза!

 

Онако, на пути увеличения мощности двигателя за счёт повышения числа оборотов коленчатого вала, встало снижение КПД Винто-Моторной Группы и пришлось применить понижающий редуктор, позволяющий оптимально подбирать характеристики пропеллеров в зависимости от назначения самолётов. Для ДВС с водянным охлаждением применение редуктора привело к смещению оси пропеллера ближе к центру двигателя, что позволило улучшить аэродинамику и разместить пушку в развале цилиндров для V-образных двигателей - как например ВК-105 на Яке.

 

Другая серьёзная проблема "раскрутки" двигателя - это повышение динамической нагрузки на кривошипно-шатунную группу и газораспределительный механизм, и как следствие - снижение эксплутационного ресурса мотора, что вынуждает применять более прочные материалы и усиливать его конструкцию.

 

Понагнетаем...

 

Высотность моторов во Второй Мировой Войне оставалась краеугольным камнем боевого применения самолётов. Различные задачи перед авиацией требуют различных высот применения. В 20-е гг. проблему пытались решить путём создание т.н. «переразмеренных» моторов. В чём их сущность? Обычный маловысотный двигатель рассчитывается на выдачу максимальной мощности у земли. С ростом высоты, в связи с падением плотности воздуха, его мощность будет понижаться. Получается, что на высоте он излишне прочен. Можно сделать двигатель, рассчитанный на выдачу мощности на высоте. А что бы такой мотор не сломался из-за избыточной мощности у земли, подачу топлива на малой высоте ограничим.

 

В 30-е гг. на смену пришли нагнетатели. Т.н. ПЦН – приводной центробежный нагнетатель, мощность на работу которого отбиралась от двигателя. Нагнетатели позволяли не только поднять высотность двигателя, но и осуществить его форсирование. Как никак за единицу времени в цилиндр попадал больший заряд смеси. Правда без ложки дёгтя ничего не бывает. Экономичность таких моторов, по сравнению с атмосферными, снизилась. Сказались потеря мощности на привод нагнетателя, потери газа на трение в коллекторе двигателя, увеличение температуры смеси из-за сжатие газа в нагнетателе, а отсюда и работа на более богатой смеси для компенсации возросшей температуры.

 

Но остался вопрос с расчётной высотой для такого двигателя. Чем больше мощности передать от двигателя к ПЦН, тем большую работу нагнетатель выполнит, и тем выше будет расчётная высота двигателя. Но т.к. двигатель рассчитан на определённую степень форсирования, то до расчётной высоты давление наддува будет избыточным. Решается проблема дросселированием ПЦН. А раз передача мощности от двигателя к нагнетателю постоянна, то на высотах меньше расчётной, эта мощность будет пропадать в туне. Т.е. более высотный двигатель на малых высотах будет проигрывать менее высотному, ибо у последнего на привод нагнетателя тратится меньше мощности.

 

Проблему узкой заточенности под высоты двигателей с ПЦН конечно начали решать. Самым простым средством стало применение многоскоростных ПЦН. Сначала двухскоростных, а затем трёхскоростных.

 

Шагом вперед стало применение двухступенчатых нагнетателей. В таком нагнетателе две крыльчатки находятся друг за другом. Это решение позволило поднять высотность моторов, одновременно «срезав» провал мощности между двумя скоростями нагнетателя. Но и это решение оказалось не без отрицательных сторон. КПД двухступенчатого ПЦН стало ниже одноступенчатого (сказались потери мощности на привод второй ступени, нагрев газа из-за большого сжатия в нагнетателе). Что в основном выражалось в повышенном расходе топлива.

 

Другим направлением разработок являлись турбокомпрессоры. Главным отличием ТК от ПЦН является привод не от двигателя, а использование «дармовой» энергии выхлопных газов. Выхлоп по трубам попадает в турбину, сообщая ей свою энергию, а уже турбина осуществляет привод нагнетателя. Плюсов – куча. Прыгает вверх экономичность такой установки, повышается высотность мотора, исчезают «изломы» мощности по высоте двигателей с ПЦН. Но и минусов оказалось не мало, что обусловило доводку ТК до серии только в одной стране – США.

 

Необходимым условием удовлетворительного функционирования ТК являлись жаропрочные сплавы и высокооборотные подшипники. Но и это не всё. Серийные образцы имели одну особенность: от двигателя до ТК шла длинная жаропрочная труба, где газы охлаждались, а далее сам ТК оказывался немалых размеров. Данный факт выливался в большую массу и габариты установки. Что бомбардировщикам было сносно, но истребителям резко уже не оптимально. И если истребителя с ТК выигрывали у своих оппонентов с ПЦН на больших высотах, то на средних и малых высотах проигрывали из-за явного перетяжеления конструкции. Практика показала, что для высотного истребителя двухступенчатый ПЦН всё таки лучше. Стоит упомянуть ещё одну особенность ТК. В процессе эксплуатации оказалось, что на малых оборотах давления газов не хватает для штатного функционирования ТК. И двигатели часто глохнут. Выходом стало применение связки ПЦН-ТК, т.н. комбинированный наддув. Низковысотный ПЦН сообщал так нехватаемый наддув на низких оборотах.

 

Напоследок в этой теме стоит упомянуть о промежуточном охлаждении смеси за ПЦН. У высотных двигателей работа, осуществляемая нагнетателем над газом, настолько велика, что смесь весьма сильно нагревается. И по закону термодинамики расширяется, приводя к уменьшению заряда, попадаемого в цилиндры. Выходом стало применение промежуточного радиатора, охлаждающего смесь перед попаданием в двигатель. Но этот шаг приводит к увеличению аэродинамического сопротивления. Что выгодно только для высотных двигателей.

 

 

Два главных вопроса к ЕД:

Зачем у Мустанга в ДКС винт от Ми-8, который разгоняет его с динамикой Спита при одинаковой заправке и бОльшей на четверть массе?

Почему у FW-190 топливо расходуется с одинаковой скоростью из переднего и заднего баков и в итоге сигнальные лампы загораются не впопад?

ps Дмитрий, если Вас заставили прикрутить винт от Ми-8 к Мустангу - подавайте знаки, мы Вас спасём!

Link to comment
Share on other sites

Продолжение:

 

 

А как же дизели?

 

Во ВМВ дизели не завоевали особой славы. Но перед войной разработки широко велись во многих странах. Дизели фирм Паккард, Юнкерс, Клерже, Бристоль тому пример. Почему же тратилось столько труда? Перед карбюраторными моторами дизель имеет ряд преимуществ. Благодаря высокому КПД, дизель очень экономичен. Благодаря впрыску, дизель сохраняет номинальную мощность на более бедной смеси. И потому меньше теряет мощность с высотой. А бОльший крутящий момент позволяет лучше переносить изменение нагрузки и дольше сохранять неизменные обороты или угол атаки лопастей пропеллера.

 

Но имеется у дизелей один недостаток. Большая степень сжатия вынуждает делать более прочный, но потому и более тяжёлый мотор. Проигрыш перед карбюраторными в удельных параметрах становится уж больно большой. Но это ещё пол беды. Избыток в весе авиадизеля перекрывается экономией топлива через 2-3 часа полёта. Главная беда заключалась в увеличенных сроках доводки мотора в связи с большой сложностью конструкции. На момент доводки дизеля, он был уже никому не нужен из-за своих слабых удельных параметров и малой мощности.

 

Потому и получились серийные дизели, нашедшие применение на самолётах, только в двух странах. В Германии и СССР. Немцы пошли по пути доводки ресурса и получили надёжные, но маломощные авиадизели Юмо. Мы сделали ставку на высокие удельные параметры и мощность. Получив по циферкам неплохие, но ненадёжные дизели Чаромского и Яковлева. После войны наработки по авиадизелям нашли применение в танкостроении и на флоте.

 

Однако, дизелезация авиации всё-таки значительно повлияла на развитие авиационных ДВС. Это выразилось в применении впрыска топлива и повышении степени сжатия в камере сгорания с 5 до 7-9 единиц.

 

Впрыскнем разок, впрыскнем другой...

 

В инжекторной системе впрыск топлива в воздушный поток осуществляется специальными форсунками (инжектор - форсунка), расположенными либо на месте карбюратора (во впускном коллекторе) — «моновпрыск», либо недалеко от впускного клапана каждого цилиндра (как правило, конструктивно во впускном коллекторе) — «распределённый впрыск» (он же многоточечный "коллекторный"), либо в головке цилиндров, и впрыск происходит в камеру сгорания — «прямой впрыск».

 

К форсункам топливо подаётся под давлением, а количество впрыснутого топлива при этом определяется механическими устройствами управления. В наиболее общем случае идея управления таким впрыском заключается в дозировании количества топлива специальным клапаном. Клапан же, в свою очередь, управляется через систему рычагов воздушным потоком, воздействующим на легкую «тарелочку», стоящую на пути потока. В настоящее время впрыски с механическим управлением практически вытеснены впрысками с управлением электронным.

 

Основные достоинства инжекторных двигателей по сравнению с карбюраторными: уменьшенный расход топлива, улучшенная динамика разгона, уменьшение выбросов вредных веществ, стабильность работы. Первый мотор со впрыском был изготовлен в России в 1916 году Микулиным и Стечкиным. Это был первый авиационный двигатель, перешагнувший 300-сильный рубеж..

 

Впервые массово была применена во вторую мировую войну в основном на истребителях воюющих стран, как удобная альтернатива карбюраторной системе, т.к. инжекционной системе впрыска в силу конструкции безразлично рабочее положение( вверх ногами или как обычно). Карбюраторные системы для работы под углом к горизонту необходимо дополнять множеством устройств, либо применять специально спроектированные карбюраторы. Однако судьба систем была разной. Японская система на истребителях "Зеро" требовала промывки после каждого полета, и поэтому не пользовалась популярностью в войсках. Русская же система впервые была применена на двигателе АШ-82 (для истребителей Ла-5). Мотор со впрыском - АШ-82ФН оказался настолько удачным, что выпускалcя еще долгие десятилетия, использовался на вертолете Ми-4 и до сих пор используется на самолетах Ил-14.

 

Форсаж? Форсаж. Форсаж!

 

Работа авиационного мотора проходит большую часть жизни далеко не на максимальных режимах. Режимов много и они предназначены для разных задач. Когда нужна максимальная дальность, когда максимальная мощность на взлёте.

 

Главным режимом является номинальный. Все остальные режимы двигателя отсчитываются от номинального в процентах. Режимы меньше номинального называются крейсерскими, а больше номинального, форсажными. На форсажных режимах ресурс двигателя уменьшается, а на крейсерских увеличивается. На форсажных режимах применяется богатый состав смеси что бы отодвинуть границу детонации при увеличившемся наддуве и облегчить тепловой режим двигателя. На крейсерских режимах применяется бедный состав смеси, что бы увеличить экономичность двигателя.

 

Рассмотрим режимы работы двигателя.

На номинальном режиме двигатель должен работать около 40-50% общего срока службы периодами непрерывной работы не больше часа.

 

 

Взлётный режим применяется естественно при взлёте. Взлётная мощность достигается увеличением наддува и оборотов. Мощность двигателя на этом режиме составляет 110-120% от номинальной, а иногда и больше. На взлётном режиме двигатель должен работать не более 5% общего срока службы периодами непрерывной работы не более 5 мин. Ограничение вызвано недостаточным охлаждением двигателя на малой скорости.

 

 

Боевой режим применяется естественно в бою. И, как и взлётный, достигается увеличением наддува и оборотов. Мощность на таком режиме примерно равна взлётной мощности. На этом режиме двигатель должен работать не более 15-25% общего срока службы периодами непрерывной работы не более 10-15 мин.

 

 

Чрезвычайный режим применяется, естественно, в чрезвычайных ситуациях. Когда требуется от кого-то убежать или кого-то догнать. Мощность на этом режиме достигает 130-160% от номинальной мощности. И в основном достигается увеличением наддува. Тепловые и механические нагрузки на двигатель при таком режиме настолько велики, что его применение ограничивается рядом условий, а само применение ведёт к уменьшению ресурса. На этом режиме двигатель должен работать не более 3% общего срока службы периодами непрерывной работы не более 1-5 мин.

Сами форсажные режимы получили наибольшее распространении в период Второй Мировой Войны и в основном на истребителях. Гонка за мощностью привела к применению высокооктанового топлива (позволяющего отодвинуть границу детонации) и форсажных жидкостей.

 

Одну группу форсажных жидкостей составляют вода и водоспиртовые смеси. Эти жидкости обеспечивают интенсивное охлаждение горючей смеси. Плюсом является увеличение заряда, попадающего в цилиндры двигателя, сдвигом границы детонации и охлаждение самого двигателя. Эта группа применяется для форсирования на малых высотах.

 

Вторую группу составляет закись азота. Плюсом закиси азота является принос в цилиндры двигателя «халявного» кислорода, которого так нахватает на больших высотах. Естественно закись азота применяется для форсирования на больших высотах. Минусами всех этих жидкостей является их вес и снижение ресурса двигателя.

 

После Второй Мировой войны...

 

Мощнейшую конкуренцию после войны двигателям внутреннего сгорания составили Турбо-Реактивные Двигатели. Проигрыш по удельным параметрам и КПД Винто-Моторной Группы на трансзвуке был непоправим. Двигатели внутреннего сгорания сохранились только для задач, связанных с дальностью. Ибо по КПД, а следовательно экономичности, выигрывали у ТРД почти в два раза.

 

В это время происходит развитие мощных многорядных воздушного и многоблочных жидкостного охлаждение моторов. Эволюция термодинамических процессов и нагрузки у этого типа моторов привела к тому, что «жидкостники» и «воздушники» сравнялись практически по своим параметрам. Так же эти моторы отличала т.н. «комбинированная схема», когда энергия выхлопных газов тратится ещё и на вращение турбины, мощность которой передаётся на вал мотора.

 

Но в 50-е с развитием Турбо-Винтовых Двигателей и Турбо-Реактивных Двигателей нового поколения и барьер экономичности тоже рухнул. Двигатели внутреннего сгорания ждала только лёгкая (и сверхлёгкая) авиация, где большим тепловым режимом в связи с малыми мощностями и не пахло. И "жидкостники" окончательно вымерли. Звёзды же остались в основном в спортивной авиации, в основной массе потеснённые рядными и оппозитными двигателями воздушного охлаждения. Правда в последнее время в сверхлёгкую авиацию стали возвращаться дизеля, но уже "автомобильного" происхождения.

 

Современные четырёхтактники достигли своего "физического" эволюционного предела и давно уже конструктивно не развиваются. Эволюция "чистых" ДВС завершилась. Наступает Эра комбинированных силовых установок, совмещающих преимущества ДВС и других двигателей, что обещает значительное повышение КПД.

 

Послесловие

 

Трагическое противостояние развитых технических цивилизаций во Второй Мировой войне послужило "катализатором" бурного развития военной техники и прежде всего авиации, которая в свою очередь крайне нуждалась в мощных, компактных и надёжных двигателях, создаваемых "на грани" существующих в то время технологий. Ресурс высокофорсированных двигателей был зачастую весьма ограничен и рассчитан всего на несколько вылетов, что впрочем в условиях "мировой бойни" вполне устраивало военных.

 

Другим путём пошло развитие автомобильного двигателестроения, где важнее всего были низкая стоимость массового производства и эксплуатации, ресурс и ремонтопригодность, дешёвые и доступные сорта топлива и масел. Тем не менее, хоть и с отставанием в 50 лет, но автомобильное двигателестроение, с точностью повторило путь развития авиационных ДВС и в конце концов упёрлость в тот-же эволюционный тупик....

 

Не верите?! Давайте тогда перечислим последние "достижения" автомобильного двигателестроения:

 

Многоступенчатые турбонагнетатели с промежуточным охлаждением воздуха.

т.н. «комбинированная схема», когда энергия выхлопных газов тратится ещё и на вращение турбины, мощность которой передаётся на вал мотора (турбокомпауд).

Степень сжатия доведённая до 9 единиц и применение 100 октановых бензинов

Повышение числа оборотов коленчатого вала - "раскрутка" двигателя - с 2-х до 5-7 тыс. об/мин

Инжекторная система подачи топлива, устанавливаемая на современных бензиновых двигателях взамен устаревшей карбюраторной системы. Также современные системы электронного впрыска способны адаптировать программу работы под конкретный экземпляр мотора, под стиль вождения водителя, и т.п.

Многоблочные двигатели - несколько блоков цилиндров на один коленвал (Н- и W-образные двигатели).

Применение форсажных жидкостей - в частности Мочевины, впрыскиваемой в камеру сгорания дизеля грузовиков с целью снижения токсичности выхлопных газов.

Шумные пиар-акции автопроизводителей, по поводу очередного "шедевра" высоких технологий, вызывают саркастическую усмешку - вот уж во-истину: "Всё новое, это хорошо забытое старое!" Приходиться лишь сожалеть, что весьма ограниченные ресурсы планеты и труд сотен тысяч инженеров тратяться на то, что-бы заново "открыть" то, что давно уже всем известно и массово применяется в других отраслях машиностроения!

 

Два главных вопроса к ЕД:

Зачем у Мустанга в ДКС винт от Ми-8, который разгоняет его с динамикой Спита при одинаковой заправке и бОльшей на четверть массе?

Почему у FW-190 топливо расходуется с одинаковой скоростью из переднего и заднего баков и в итоге сигнальные лампы загораются не впопад?

ps Дмитрий, если Вас заставили прикрутить винт от Ми-8 к Мустангу - подавайте знаки, мы Вас спасём!

Link to comment
Share on other sites

Версия 1.2.7

 

0_f3e71_70a763e4_XXXL.png

  • Like 1

Gigabyte Z690 UD DDR4 /i9-12900KF /64 Gb- G.SKILL Trident  DDR4 4000 МГц / Palit GeForce RTX 3070 Ti GameRock 8GB /Corsair HX1200 1200W 

DCS A-10C Обучающий урок "Концепция HOTAS" (RU)

DCS P-51D Руководство пилота

Обучающие миссии для Ми-8 (Радиооборудование)

Link to comment
Share on other sites

Guest =YeS=CMF

Спасибо Slayer!

Там говорится, что никто, кроме США не довели до серии турбонагнетатель, но ведь DB-601, DB-605 и DB-603 все были с турбо? Да и Jumo-213 наш будет с турбиной?

 

Eponsky_bot, значит всё ОК теперь? Я тоже заметил, что перегрева нет, пока рулишь, в 1.2.7.

Link to comment
Share on other sites

  • ED Team
Спасибо Slayer!

Там говорится, что никто, кроме США не довели до серии турбонагнетатель, но ведь DB-601, DB-605 и DB-603 все были с турбо? Да и Jumo-213 наш будет с турбиной?

 

Eponsky_bot, значит всё ОК теперь? Я тоже заметил, что перегрева нет, пока рулишь, в 1.2.7.

 

ээээ... вы не путайте - на немцах никогда не было ТУРБО! Там обычный ПЦН, только со всякими хитростями, чтобы воздух зря не пересжимать.

Ніщо так сильно не ранить мозок, як уламки скла від розбитих рожевих окулярів

There is nothing so hurtful for the brain as splinters of broken rose-coloured spectacles.

Ничто так сильно не ранит мозг, как осколки стекла от разбитых розовых очков (С) Me

Link to comment
Share on other sites

  • ED Team
Версия 1.2.7

 

0_f3e71_70a763e4_XXXL.png

 

Ну вот и на вашей улице праздник... :)

Ніщо так сильно не ранить мозок, як уламки скла від розбитих рожевих окулярів

There is nothing so hurtful for the brain as splinters of broken rose-coloured spectacles.

Ничто так сильно не ранит мозг, как осколки стекла от разбитых розовых очков (С) Me

Link to comment
Share on other sites

Ну вот и на вашей улице праздник... :)

 

спасибо :)

Gigabyte Z690 UD DDR4 /i9-12900KF /64 Gb- G.SKILL Trident  DDR4 4000 МГц / Palit GeForce RTX 3070 Ti GameRock 8GB /Corsair HX1200 1200W 

DCS A-10C Обучающий урок "Концепция HOTAS" (RU)

DCS P-51D Руководство пилота

Обучающие миссии для Ми-8 (Радиооборудование)

Link to comment
Share on other sites

  • 2 months later...

Чет не пойму, вот видео которое я делал довольно давно. В нем показано что при переводе РПО на большой шаг при максимальном наддуве - происходит заклинивание двигателя.

 

 

 

 

В тоже время попробовал вчера, сделать тоже самое и получил нулевой результат. :huh: Двигатель стал не убиваемым каким то ? (может поэтому в миссии " перегон"удавалось жарить на максимале 30 минут без последствий )

 


Edited by Eponsky_bot

Gigabyte Z690 UD DDR4 /i9-12900KF /64 Gb- G.SKILL Trident  DDR4 4000 МГц / Palit GeForce RTX 3070 Ti GameRock 8GB /Corsair HX1200 1200W 

DCS A-10C Обучающий урок "Концепция HOTAS" (RU)

DCS P-51D Руководство пилота

Обучающие миссии для Ми-8 (Радиооборудование)

Link to comment
Share on other sites

Какие причины заклинивания двигателя ты знаешь?

 

Ну вообще, это деформации в конструкции двигателя. Вызванные различными факторами.

 

например, в данном случае

 

В результате, если РУД достаточно сильно подан вперед, а реальные обороты двигателя низкие, может сложится ситуация, когда опережение зажигания будет слишком велико и давление над поршнем будет намного выше расчетного, перегружая КШМ. 2400 при полном РУДе - и довольно быстро вам придется думать, где совершать вынужденную посадку.

Edited by Eponsky_bot

Gigabyte Z690 UD DDR4 /i9-12900KF /64 Gb- G.SKILL Trident  DDR4 4000 МГц / Palit GeForce RTX 3070 Ti GameRock 8GB /Corsair HX1200 1200W 

DCS A-10C Обучающий урок "Концепция HOTAS" (RU)

DCS P-51D Руководство пилота

Обучающие миссии для Ми-8 (Радиооборудование)

Link to comment
Share on other sites

  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...